Neuritogenic activity of a genipin derivative in retinal ganglion cells is mediated by retinoic acid receptor β expression through nitric oxide/S-nitrosylation signaling.

نویسندگان

  • Yoshiki Koriyama
  • Yusuke Takagi
  • Kenzo Chiba
  • Matsumi Yamazaki
  • Kunizo Arai
  • Toru Matsukawa
  • Hirokazu Suzuki
  • Kayo Sugitani
  • Hiroyuki Kagechika
  • Satoru Kato
چکیده

Genipin, a herbal iridoid, is known to have both neuroprotective and neuritogenic activity in neuronal cell lines. As it is structurally similar to tetrahydrobiopterin, its activity is believed to be nitric oxide (NO)-dependent. We previously proposed a novel neuroprotective activity of a genipin derivative, (1R)-isoPropyloxygenipin (IPRG001), whereby it reduces oxidative stress in RGC-5, a neuronal precursor cell line of retinal origin through protein S-nitrosylation. In the present study, we investigated another neuritogenic property of IPRG001 in RGC-5 cells and retinal explant culture where in we focused on the NO-cGMP-dependent and protein S-nitrosylation pathways. IPRG001 stimulated neurite outgrowth in RGC-5 cells and retinal explant culture through NO-dependent signaling, but not NO-dependent cGMP signaling. Neurite outgrowth with IPRG001 requires retinoic acid receptor β (RARβ) expression, which is suppressed by an RAR blocking agent and siRNA inhibition. Thereby, we hypothesized that RARβ expression is mediated by protein S-nitrosylation. S-nitrosylation of histone deacetylase 2 is a key mechanism in chromatin remodeling leading to transcriptional gene activation. We found a parallelism between S-nitrosylation of histone diacetylase 2 and the induction of RARβ expression with IPRG001 treatment. The both neuroprotective and neuritogenic activities of genipin could be a new target for the regeneration of retinal ganglion cells after glaucomatous conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirement of Retinoic Acid Receptor β for Genipin Derivative-Induced Optic Nerve Regeneration in Adult Rat Retina

Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs' program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (...

متن کامل

Retinoic Acid Receptor β for Genipin Derivative-Induced Optic Nerve Regeneration in Adult Rat Retina

Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs’ program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (...

متن کامل

Expression of Functional Nitric Oxide Synthase for Neuritogenesis in PC12h Cells

We have previously demonstrated that a natural iridoid compound, genipin, induces neurite outgrowth mediated by nitric oxide (NO) production in PC12h cells. However, genipin could not induce neurite outgrowth by PC12 cells, the parental cells of PC12h cells. The difference in neuritogenic response to genipin may be due to a lack of neuronal NO synthase (NOS) protein, most likely neuronal NOS, i...

متن کامل

Genipin Derivatives Protect RGC-5 from Sodium Nitroprusside-Induced Nitrosative Stress

CHR20 and CHR21 are a pair of stable diastereoisomers derived from genipin. These stereoisomers are activators of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). In the rat retinal ganglion (RGC-5) cell model these compounds are non-toxic. Treatment of RGC-5 with 750 μM of sodium nitroprusside (SNP) produces nitrosative stress. Both genipin derivatives, howev...

متن کامل

Neuritogenic activities of 1-alkyloxygenipins.

We designed 1-alkyloxygenipins with the aim of improving the stability of genipins based on the structural and electronic properties of genipins, and prepared 1-alkyloxygenipins and examined their neuritogenic activities in PC12h cells. All genipin-derivatives exhibited electronic properties similar to those of genipin and induced significant neurite outgrowth. These compounds will be classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 119 6  شماره 

صفحات  -

تاریخ انتشار 2011